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Abstract

Detection of multiple human papillomavirus (HPV) types in the genital tract is common. Associations among HPV types may
impact HPV vaccination modeling and type replacement. The objectives were to determine the distribution of concurrent
HPV type infections in cervicovaginal samples and examine type-specific associations. We analyzed HPV genotyping results
from 32,245 cervicovaginal specimens collected from women aged 11 to 83 years in the United States from 2001 through
2011. Statistical power was enhanced by combining 6 separate studies. Expected concurrent infection frequencies from a
series of permutation models, each with increasing fidelity to the real data, were compared with the observed data.
Statistics were computed based on the distributional properties of the randomized data. Concurrent detection occurred
more than expected with 0 or $3 HPV types and less than expected with 1 and 2 types. Some women bear a
disproportionate burden of the HPV type prevalence. Type associations were observed that exceeded multiple hypothesis
corrected significance. Multiple HPV types were detected more frequently than expected by chance and associations
among particular HPV types were detected. However vaccine-targeted types were not specifically affected, supporting the
expectation that current bivalent/quadrivalent HPV vaccination will not result in type replacement with other high-risk
types.
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Introduction

Genital HPV is the most common sexually transmitted infection

[1,2]. HPV is a necessary, but not sufficient, cause of cervical

cancer [3,4] and genital warts [5] and is associated with other

anogenital cancers [6]. Of the over 100 HPV types, at least 40

infect the anogenital tract. Twelve types have evidence sufficient

for classification as ‘‘high-risk’’ HPV (HR HPV) and an additional

13 have some limited evidence of cancer risk [7]. Concurrent

infection with multiple HPV types is common, especially in young

women and in people with HIV infections [8–16]. Concurrent

infection with multiple HPV types compared to single HR-HPV

infection has been found to increase the risk of disease in some

reports [17,18] but not in others [4,15,19]. The high prevalence of

HPV and frequency of concurrent infections with more than one

type provides an opportunity for HPV type interactions.

The current HPV vaccines target the two HR-HPV types

(HPVs 16 and 18) associated with 70% of cervical cancers. If,

however, types display positive associations to inflate infection

rates, broad HPV vaccination coverage may lead to reduction of

HPV types not targeted by the vaccine, i.e. ‘‘cross-protection’’ not

based on cross-reaction immunity but as a result of reduced fitness

of positively associated types. Alternatively, negative associations

among types may lead to type replacement of non-vaccine types as

competing types targeted by vaccines are reduced [20].

Associations among multiple HPV types have been examined in

prior studies, but the conclusions are contradictory [21–28]. A

limiting factor for robust analysis of type associations is the

number of HPV positive samples in a dataset relative to the

hundreds of potential type combinations.

The aim of the present study is to address overall and type-

specific HPV associations by taking advantage of a large

laboratory database of HPV results obtained using the same

validated HPV typing assay. Aggregating multiple study datasets

provides greater statistical power in analyzing potential HPV type

combinations. We employed a permutation methodology to test

first a complete null model of random type association, and then

gradually less naı̈ve models with preserved higher orders of data

structure [29].

Materials and Methods

Dataset
The dataset includes anonymized HPV typing results from

32,245 cervicovaginal samples from six studies of women aged 11

to 83 years conducted between 2001 through 2011 (Table 1).

Because all data were rendered non-identifiable before this

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e82761



analysis was conceived, the project does not involve human

subjects under United States Department of Health and Human

Services’ Code of Federal Regulations Title 45 Section 46.102(f).

All samples were from different immune-competent women in the

United States. The majority of samples were clinician collected

exfoliated cervical cells – 15,086 ThinPrepH (Hologic, Bedford,

MA, USA), 10,147 Specimen Transport MediumTM (Qiagen,

Valencia, CA); the remainder was self-collected cervicovaginal

specimens. Most specimens (28,417) were from screening or

general populations, but 3,828 were from colposcopy clinics. A

binary matrix of the HPV typing results with the general versus

colposcopy population status has been made available online (Data

S1).

HPV DNA Genotyping
All samples were extracted to yield DNA or total nucleic acids

(DNA and RNA), and 0.5–1% of the total sample extract was

tested for HPV. HPV typing was performed using the Linear

Array HPV Genotyping Test (LA, Roche Diagnostics, Indianap-

olis, IN) according to the manufacturer’s protocol. The LA detects

37 HPV types (6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 45, 51,

XR(52), 53, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 68, 69, 70, 71,

72, 73, 81, 82, 83, 84, 89, IS39). HPV types 33, 35, and 58 have

type-specific probes, but HPV 52’s probe (XR) also reacts with

HPV 33, 35, and 58. Therefore when both a HPV 33, 35, or 58

probe and the XR probe is positive, the LA result is equivocal as to

whether HPV 52 is being detected or the probe is just reacting

with HPV 33, 35, or 58. Samples with equivocal results for HPV

52 were tested with a quantitative type-specific assay for HPV 52

[30]. All HPV DNA testing was conducted in a single laboratory

with rigorous quality control and high reproducibility.

HPV 56 and 66 Genotyping Specificity
In order to test the type specificity of the LA for HPVs 56 and

66, high copy numbers of their L1 genes were amplified from

plasmids. The primers were designed to flank the LA target region

(Table S1). Three different primer sets for each HPV type were

tested for efficiency of amplifying the target region and reproduc-

ibility of LA specificity. After PCR product quantification, 10 ul of

each amplicon was directly incorporated into the LA assay.

Statistical Analysis
Generating Expected Models. To determine the expected

number of concurrent infections, the matrix of observed results

was randomized in five different ways, depending on the

characteristics of the observed data being controlled, using R

(Figure 1 and Table S2) [31]. Observed data had rows by subject

and columns by 37 HPV types with zeros (0 s) indicating negative

HPV results and ones (1 s) indicating positive (Figure 1A). For the

null model of complete random association of HPV types in

Figure 1B, the 0 s and 1 s were shuffled within each column using

the ‘sample’ function of the R base package version 2.14.1,

preserving the count of each HPV type (fixed column sums) while

allowing the number of types per subject to vary (variable row

sums).

For the subsequent matrix randomizations, the ‘permatswap’

function created a series of matrix permutation models, each with

increasing fidelity to the real data, where some of the higher order

data structure is preserved during the randomization [32]. The

trial-swap method overcomes the deficiencies of other fixed

column/row sum algorithms in avoiding biased randomized

matrices [33]. The number of randomization steps was set to

56107 for the ‘burnin’ parameter as this value maximized Bray-

Curtis dissimilarity values, indicating effective matrix randomiza-

tion [33]. In the non-strata naı̈ve model, the matrix was

randomized while preserving the marginal HPV type counts and

types per person (fixed row and column sums; Figure 1C). For

higher fidelity randomization models, observations were stratified

based on the 6 studies (study strata), 1 through 14 concurrent

infections (k strata), or a combination of both (study-k strata) using

the ‘strata’ parameter of ‘permatswap’. Randomization within

each strata had fixed column and row sums (Figure 1D). To assess

general trends of concurrent infections, 10,000 randomized

matrices were generated from all the subjects (HPV positive and

negative) and compared to the expected results. To assess the

significance of specific type combinations, 1,000 randomized

matrices were generated from the HPV positive subjects and

analyzed as discussed below.

Calculating Statistics from Expected Models. Counting

occurrences of type combinations, whether in the observed data or

in the randomized matrices for a given model, was done in Perl

(Active Perl 5.8; ActiveState, Vancouver, BC). A key feature of the

counting, whether in observed or permuted data, was that specific

type combinations were counted whether or not additional types

were present. The results for the randomized matrices were then

matched to type combinations observed in the real data.

Results for the Perl scripts above were then read into a

Mathematica program to assess statistical significance (Wolfram

Research, Champaign IL). First, the expected counts of any given

type combination in the permutation models were fit to a Poisson

probability density function (pdf; Figure S1A). The Poisson

distribution fits were consistently very good (model p.0.99). To

graphically indicate significant type combinations, the observed

counts were compared to p-value boundaries created from the

Poisson distribution and the mean value parameter for each type

combination generated in the permutation models (recall a Poisson

distribution requires only the single parameter). Type combination

counts corresponding to p-value boundaries of 1024, 1026, 1028,

etc. were calculated for both the right (observed . expected) and

left (observed , expected) tails of the Poisson distribution.

Observed counts were then plotted against expected counts for a

given permutation model so that type combinations falling outside

the boundary value lines could be easily seen. Besides the

hypothetical p-value boundaries, actual p-values and Z-scores

were computed for each specific type combination using the

Poisson fit mean values from the permutation runs. Because the

type combination frequencies observed in the 1,000 randomized

matrices precisely fit a known and well characterized distribution,

p-values ,0.001 can be reliably estimated.

Due to the number of HPV type combinations analyzed, the

Benjamini and Hochberg false-discovery rate (fdr) was calculated

using ‘p.adjust’ in R to control for spurious results [34].

Further details on calculating the statistics are in Methods S1.

All code (R, Perl, or Mathematica) is available upon request.

Results

Of 32,245 subjects, 13,729 were positive for $1 HPV type, and

7,358 were positive for multiple HPV types (Table 1). Allowing for

the subset of individuals with multiple HPV types, specific HR

HPV types were detected 15,780 times out of a total of 28,666

HPV type positive results.

General Trends of Concurrent Infections
Figure 2A shows the results of testing the null model of complete

random association among HPV types as diagramed in Figure 1A

and B. The observed data did not overlap with the expected box

plot, indicating the observed concurrent infections of the aggregate
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dataset do not fit an unstructured random assortment. The box

heights in Figure 2A reveal that all of the 10,000 iterations of the

null expected model are highly self-consistent for the number of

HPV types per person and highly inconsistent with the real data.

At the maximum number of 9 expected HPV types per person in

the null model, only 2 people out of 3.226108 (3.226104 people/

iteration 6 16104 iterations) are expected to have this many

concurrent HPV types detected, whereas the observed data

contains a continuous distribution of subjects with up to 14

HPV types detected at the same time. Furthermore, infection with

0 and 3 through 14 HPV types occurred more than expected by

the null model. In contrast, infection with 1 and 2 HPV types

occurred less than expected.

Because such differences in general trends between the observed

data and null model would bias the analysis of specific HPV type

associations, these trends were preserved in subsequent random-

izations to create continuously less naı̈ve models. This random-

ization resulted in the distribution of each of the 10,000

permutation matrices exactly matching the observed results

(non-strata model; Figures 1C and 2B). However dividing the

data into 13 HR and 24 LR HPV types post-randomization shows

that the observed data has an additional level of structure which

may confound specific type analysis; the general distribution of

HR and LR HPV types differ between the observed and this first

permutation model (Figure S2A). Compared to this model, the

HR types are either alone or with 1 other HPV type more than

expected. Conversely, the LR types tend to have more observa-

tions in high numbers of concurrent infections than expected.

Grouping the dataset by studies, the differences in distribution

among HR and LR HPV types are blurred in the general

populations but increase further in the colposcopy populations

(Figure S2B and C). To control for this level of structure,

randomizations are conducted by conserving the type prevalence

and HPV types per person within each strata of HPV types per

person (k strata model; Figure 1D). In other words, data are

randomized separately within people with 2 types, people with 3

types, etc. This eliminates any difference in the distribution of HR

and LR HPV or even each specific HPV type k within strata

between the observed data and model. This method of stratifica-

tion removes 6,371 subjects with only 1 detected HPV type from

the concurrent infection analysis, and limits the analysis to the

7,358 subjects with $2 concurrent HPV types. Additionally data

are stratified by the study data source (study strata) and by

combined study and types per person (study-k strata). For this final

and least naı̈ve study-k model of the 84 possible strata (6 studies

614 k strata), 67 strata exist in the data as some studies do not

have all 14 k strata. For the study-k model, each observation of an

HPV type is restricted to potential interactions only with other

types of that stratum. The association among HPV types is still

randomized within these imposed structures.

Significant HPV Type Combinations
The permutation models were used to determine which specific

HPV type combinations are truly unexpected and which

combinations are artifacts of study factors structuring the dataset.

Figure 3 plots the observations for combinations of 2 through 4

HPV types for (A) the most naı̈ve model (the non-strata model with

only row and column sums preserved) and (B) the least naı̈ve

model (the study-k strata model). The significance boundary lines

for under observed type combinations bottom out on the right side

Figure 1. An abbreviated example of matrix randomizations. The observed data (A) of HPV infection status is organized in binary matrix
indicating type-specific infection status. To generate expected models, data are randomized while preserving column sums (null model; B) or row
and column sum (non-strata model; C). Additionally data were stratified by HPV types per person (k-strata model 2; D) or/and study data source
(study and study-k strata models; not shown) with randomization restricted to within each strata.
doi:10.1371/journal.pone.0082761.g001
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of the plot. This is because even zero observations of most 4 type

combinations can be expected and p = 0.0001 is difficult to achieve

even in a dataset of this size. The pairs with the largest positive and

negative Z-scores, 56 and 66 on the over observed side (left side of

Figure 3) and 16 and 72 on the under observed side (right side), are

indicated for illustration. Very few under observed 3 and 4 type

combinations were detected.

Table 2 lists HPV pairs observed more or less than expected in

the various models. As the general distribution of the null model in

Figure 2 differed so drastically from the observed results, a list of

significant specific type combinations for this model is uninfor-

mative and therefore not included. Of the permutation models, the

non-stratified model differs the most from the observed results, and

therefore finds the greatest number of HPV pairs to be significant

(47 pairs). However as additional levels of data structures are

conserved in the less naı̈ve models, fewer HPV pairs are

significant. Furthermore, only HPV pairs observed more than

expected passed the stringency test of the highest fidelity models;

no HPV pairs were significantly under observed against the k and

study-k models. However for the non-strata and study strata

models, vaccine-targeted type HPV 16 was found to be observed

less than expected with HPVs 58, 62, 69, 70, and 72. Several of

the HPV pairs observed more than expected were within the same

species. The association of HPVs 56 and 66 from species a6 has

the highest z-score compared to all models with a z-score

indicating at least 8 standard deviations away from the model

mean.

The data accommodate a more detailed scrutiny of multiple

concurrent infections. The significant results for 2, 3, and 4 type

combinations are interdependent (Tables 2A, S3, S4, and S5).

Although significantly over observed pairs like HPV types 56 and

66 pickup other types and therefore may drive the significance for

3 and 4 type combinations, the possibility remains that real

synergies exist between 3 or more types, or they appear to exist

because of cross-hybridizing types.

Because HPV 56 and 66 are strongly associated with each other

and are closely related genetically, it is important to exclude

artifacts of the assay that could account for the association. We

tested the specificity of the genotyping assay for these two types

using high copy numbers of type-specific templates. PCR

amplified HPV DNA only hybridized to the intended probe band

without cross hybridization (Figure S3).

Discussion

Observations from 6 different HPV genotyping studies were

combined to address whether concurrent HPV infections vary

from random assortment. Observations were compared with both

a null and progressively less naı̈ve models as row and column

sums, particular study, and concurrent infection burden variables

in the dataset were incorporated. The results of our null model are

consistent with other reports of multiple infections being detected

more than expected [21–25,27,28,35]. In our permutation models,

which incorporate restrictions based on the observed data

structure, certain specific HPV type combinations are statistically

significantly over or under observed. These models have greater

utility in testing the validity of alternative hypotheses and serve as a

more rigorous control than null models [36]. Additionally we have

demonstrated a novel approach to combine data from multiple

datasets that preserves statistical rigor while enhancing statistical

power.

Other groups have noted excess concurrent HPV type infections

compared to null models. The null hypotheses included maxi-

mum-likelihood based on an assumed Poisson distribution [35],

Hardy-Weinberg equilibrium test based calculation [23], simulat-

ing concurrent infections based on type frequencies in populations

[21,24], and Bayesian logistic regression [27,28]. These null

Figure 2. Differences between observed and expected number of people with concurrent infections. Dots representing observed
number of concurrent infections are plotted against boxplots of expected distribution from 10,000 randomized matrices. Boxplots indicate the
minimums and maximums, 25% and 75% quartiles, and medians of randomized matrices. (A) tests the null model of complete random association of
HPV types as in Figure 1B. (B) controls for observed types per person in the non-strata fixed margins permutation model as in Figure 1C. Note that
because the margins for all randomized matrices are set to be equal to that of the observed data and thus the same value for each permutation, the
‘‘boxes’’ have no ranges and are represented as single-value lines.
doi:10.1371/journal.pone.0082761.g002
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models demonstrate that HPV types are not distributed purely at

random in populations and are in agreement with the results using

our null model. Some women are infected with high numbers of

multiple HPV types and bear a disproportionate burden of HPV

types compared to the general population.

Some authors have controlled for risk factors of multiple HPV

infections while analyzing type-specific interactions. People

infected with HPV are more likely to acquire additional HPV

types than are uninfected persons [37]. Factors include age,

immunity, smoking, cervical pathology, lifetime number of sexual

partners, frequency of sexual intercourse, fidelity of sexual partner,

and study area.[8–16] Controlling for subsets of these factors has

reduced the discrepancies between the observed data and

expectations in various models [24,27,28]. However there are

limits in the ability to fully control for all known risk factors even if

they are measured, and the potential impact of unknown factors

cannot be addressed.

This current analysis takes a different approach to test HPV

type associations. The matrix permutation models presented in

this manuscript are based on recommendations as discussed by

Schwab, et al. [36]. Our models do not incorporate knowledge

about underling processes or confounding factors for multiple

HPV infections. They attempt a more rigorous challenge than the

null model by randomizing the data within basic data structure

restrictions. By fixing row sums and stratifying on k-strata, the

number of HPV types per person is accounted for regardless of

knowing or not knowing the prevalence of risk factors for multiple

HPV infections in the study populations. This increases the

number of suitable datasets. Instead of being restricted to data in

which at least most of the risk factors are recorded, all datasets

with sound laboratory assays of type-specific HPV results are

applicable. The tested HPV types can even vary among the

studies.

Another limitation of the previous work is the restriction of each

analysis to single study datasets. Prior studies have relatively small

specimen numbers compared to the number of possible HPV

combinations. Often, HPV testing was performed for a small

subset of genital HPV types. Even with multiple HPV types

assayed, because of small sample size, statistical analysis was

limited to a few HPV types. In the largest previous study with

13,961 women, only 1,451 were HPV positive [27]. In contrast

our current dataset has 13,729 HPV positive subjects of which

7,358 are positive for multiple HPV types. While combining

multiple datasets results in greater statistical power due to

increased sample size, the heterogeneity of the aggregated studies

is a complicating factor. The studies in our analysis varied by

population, collection method, and target tissue. A model

randomized across studies increases the risk of type I error. We

address this issue by stratifying the aggregate dataset by study and

confining the randomization to within each stratum. Consistent

with weeding out type I errors, significant type combinations were

reduced in the study strata model compared to the non-strata

model.

Figure 3. Significant combinations for k = two, three and four HPV types. The graphs depict the non-strata (A) and study-k (B) permutation
models. Boundary lines (dots) show p-value significance at 1024 and 1028. The mean expected counts on the x-axis represents the average number
of observations from 1,000 randomized matrices; the y-axis shows the actual observed counts for the type combinations. Single observations of 4
HPV type combinations are excluded.
doi:10.1371/journal.pone.0082761.g003
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Table 2. Significant HPV Pairs.

A Observed/Expected (Z-score) for Models.

HPV Types* Species Observations Non-Strata Study Strata k Strata Study-k Strata

56,66 a6, a6 164 2.2 (10.4) 2.1 (9.9) 1.8 (8.0) 1.9 (8.1)

51,82 a5, a5 65 2.0 (5.5) 2.0 (5.6) 1.8 (4.9) 1.8 (4.8)

51,69 a5, a5 20 3.0 (5.2) 2.9 (5.0) 2.7 (4.7) 2.8 (4.8)

33,58 a9, a9 38 2.0 (4.5) 1.7 (3.2) 2.2 (5.0) 2.0 (4.3)

52,58 a9, a9 129 1.5 (4.8) 1.4 (4.0) 1.5 (5.0) 1.4 (4.0)

51,IS39 a5, a5 18 2.9 (4.7) 2.7 (4.4) 2.2 (3.4) 2.2 (3.4)

16,18 a9, a7 194 1.3 (3.7) 1.3 (3.3)

31,45 a9, a7 75 1.5 (3.3) 1.5 (3.3)

62,83 a3, a3 110 1.4 (3.7) 1.4 (3.2) 1.4 (3.5) 1.4 (3.2)

55,62 a10, a3 82 1.6 (4.2) 1.5 (3.6) 1.5 (3.6) 1.4 (3.1)

81,83 a3, a3 57 1.6 (3.5) 1.6 (3.5) 1.5 (3.0)

62,81 a3, a3 84 1.5 (3.8) 1.5 (4.0)

71,72 a15, a3 11 2.6 (3.2) 3.2 (4.0)

72,83 a3, a3 29 1.7 (2.8) 1.9 (3.6)

61,62 a3, a3 133 1.3 (3.4) 1.4 (3.5)

62,70 a3, a7 63 1.5 (3.4)

61,70 a3, a7 54 1.6 (3.3)

61,83 a3, a3 90 1.4 (3.3) 1.4 (3.0)

70,72 a7, a3 15 2.1 (2.9)

71,83 a15, a3 22 1.9 (2.9) 1.8 (2.8)

67,84 a9, a3 64 1.4 (2.8)

62,72 a3, a3 35 1.6 (2.8)

61,71 a3, a15 24 1.7 (2.8)

16,39 a9, a7 224 1.2 (2.7)

66,89 a6, a3 137 1.4 (3.7) 1.3 (3.5)

6,89 a10, a3 99 1.4 (3.0) 1.4 (3.1)

51,66 a5, a6 161 1.3 (3.3) 1.3 (3.0)

35,83 a9, a3 67 1.5 (3.1)

54,61 a13, a3 108 1.3 (3.0)

11,18 a10, a7 21 1.9 (3.0)

42,56 a1, a6 78 1.4 (2.9)

26,35 a5, a9 13 2.2 (2.9)

42,73 a1, a11 55 1.5 (2.8)

B Observed/Expected (Z-score) for Models

HPV Types* Species Observations Non-Strata Study Strata k Strata Study-k Strata

16,58 a9, a9 109 0.7 (23.1) 0.7 (23.9)

16,72 a9, a3 23 0.4 (24.1) 0.5 (23.7)

31,62 a9, a3 63 0.6 (23.8) 0.7 (23.3)

58,59 a9, a7 40 0.6 (23.3) 0.6 (23.3)

66,70 a6, a7 23 0.5 (23.1) 0.5 (23.1)

66,72 a6, a3 10 0.4 (23.0) 0.4 (23.1)

16,62 a9, a3 175 0.7 (24.0) 0.8 (22.9)

16,70 a9, a7 58 0.6 (23.5) 0.7 (22.9)

39,83 a7, a3 44 0.6 (23.4) 0.7 (22.9)

51,72 a5, a3 14 0.5 (22.9) 0.5 (22.9)

31,83 a9, a3 42 0.6 (22.9) 0.6 (22.8)

16,69 a9, a5 2 0.2 (22.8) 0.2 (22.8)
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The approach we used gives greater confidence in interpreting

the biologic significance of the identified type associations. Pairs of

HPV types detected more frequently than expected were often

from the same species [38]. HPVs 56 and 66 are from species a6.

HPVs 51, 69, 82, and IS39 are all from species a5, and IS39 is

considered a subtype of HPV 82. Finally HPVs 33, 35, 52, and 58

are part of a9. Probes for HPV 52 are known to cross hybridize

with HPVs 33, 35, and 58. Vaccarella et al. also found positive

association among a9 types 33, 35, 52, and 58, but attributed this

to the ambiguity of HPV 52 in the enzyme immunoassay [27] and

line blot assay [28]. For the line blot assay used for our data,

whenever the HPV 52 probe and any of these other 3 probes are

positive, the line blot assay is ambiguous for detection of HPV 52.

Our studies used a subsequent type-specific PCR assay for HPV

52 to eliminate the ambiguity in these situations. Because of the

genetic similarity within species, the limits of type-specificity in

consensus PCR assays (such as LA) due to cross-hybridization

could be suspected. However all results were obtained under

stringent quality control, and high copy numbers of HPV 56 and

66 DNAs did not cross hybridize. Uncharacterized HPV types that

produce amplicons that hybridize to multiple probes cannot be

completely ruled out but are very unlikely because of the design of

the assay and previous validation studies. Positive associations

among HPV types were also found between non-species types.

The significant type combinations likely indicate a genuine

association among the above species types.

Fewer and less significant negative associations among HPV

types were identified. No pairs of HPV types passed the statistical

cutoffs for the stringent k strata and study-k strata models, and no

negative associations for any model were found for combinations

of 3 and 4 types. HPV 16 was frequently included as one of the

types of pairs observed less frequently than expected in the non-

strata and study strata models. The types observed less frequently

than expected with HPV 16 are candidates for type replacement

following reduction of HPV 16 by vaccination. The only HR type

in this group was HPV 58; most negative associations with HPV

16 were with LR types. A nonavalent HPV vaccine in clinical trials

is formulated to target HPV 6, 11, 16, 18, 31, 33, 45, 52 and 58,

and thus HPV 58 would be targeted and at reduced risk of

replacing HPV 16. Also, the study strata model indicates a possible

negative association between HR types 58 and 59. However no

negative associations were significant against the least naı̈ve

models, reducing the probability of type replacement.

A strength of the implemented method is that distribution

functions were tightly fit to the permutated data to accurately

calculate p-values. Typically for permutated data, p-values can

only be calculated down to the inverse of the number of

permutations. If a HPV combination does not occur even once

at of 1000 permutations, the p-value would be ,0.001. However

because a distribution function can be fit to the permutated data,

we can calculate p-values below the permutation limit. Thus p-

values down to 1028 and smaller can be calculated without

needing 108 permutations. This allows accurate significance

testing while conserving computer resources.

Limitations exist with the current analysis. The contribution of

each study to the analysis is proportional to the sample size of each

study. Thus larger studies contribute more to the final results. A

weighting factor for each study stratum would adjust this. We

suggest that imposing the structure of the observed data in terms of

column and row sums, and stratification, controls for the risk

factors of multiple HPV types, e.g. risk factors for increasing HPV

exposure. However without these variables in the dataset, this

proposition cannot be tested directly.

The methodology presented can be applied to other data.

Indeed, the current analysis is an expansion of a previous

application. This randomization within strata was first used to

test species’ associations on archipelago islands [29]. By stratifying

the dataset prior to randomization within the strata, it relaxes the

analyst from making assumptions about the null distribution of the

data and having information available on risk factors. By

stratifying on studies, this methodology may be adapted to

prospectively analyzing data from meta-anaylsis studies.[39] The

presented analysis consisted of a binary matrix, however the

algorithms used can be applied to other data types, expanding its

application [32].

We have presented a novel approach to HPV concurrent

infection analysis, which has allowed us to obtain greater statistical

Table 2. Cont.

B Observed/Expected (Z-score) for Models

HPV Types* Species Observations Non-Strata Study Strata k Strata Study-k Strata

53,81 a6, a3 45 0.7 (22.8)

16,83 a9, a3 113 0.7 (23.2)

16,84 a9, a3 190 0.8 (23.0)

67,83 a9, a3 14 0.5 (22.9)

16,55 a9, a10 72 0.7 (22.9)

31,70 a9, a7 21 0.5 (22.9)

16,71 a9, a15 19 0.5 (22.9)

39,62 a7, a3 83 0.7 (22.8)

39,81 a7, a3 33 0.6 (22.7)

39,84 a7, a3 84 0.7 (22.7)

39,70 a7, a7 26 0.6 (22.7)

16,61 a9, a3 157 0.8 (22.7)

Results are listed for HPV pairs with fdr #0.05 for (A) observed more than expected and (B) observed less than expected.
*HR-HPV types are underlined.
doi:10.1371/journal.pone.0082761.t002
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power to address the question of HPV type association as well as

provide new methods to analyze aggregate datasets.

Supporting Information

Figure S1 Illustration of how 1000 randomized matrices
are used to determine significance boundaries shown in
Figure 2. Example (A) of a Poisson probability density function fit

to the observed counts for a given type combination in 100

iterations of a permutation model Monte Carlo randomization.

The plot (B) shows the number of observations needed to meet

p = 0.0001 significance (y-axis) vs. number expected by a given

permutation model (x-axis). The x-axis corresponds to the mean

number of counts observed in the 1000 Monte Carlo runs from any

of the models. The equation embedded shows the power law fit used

to create the boundary value lines on the left side of the plot (i.e. over

observed type combinations) in Figure 3. The fits describe the right

tail of the Poisson pdf (the number of observations needed to match

the level of significance) fit to the mean number of observations for

any given type combination in the Monte Carlo runs. For example,

if 28 = 256 counts are expected in the given permutation model,

then roughly 340 observations in the real data are needed to satisfy

p = 0.0001. If only 16 counts are expected, the needed number

observed counts increases (as a ratio relative to expected) to about

40 for the same level of significance. Rarely observed type

combinations with very rare expected values in the permutation

models (i.e. candidates for over observed combinations, not under

observed) were excluded from the analysis of significance. This is

because, for example, it is difficult to determine the true significance

or impact of a 4 type combination that is seen in the observed data

only once, even if it was expected ,0.001 times (for a very large

observed/expected ratio) in a database of 30,000 specimens.

(TIF)

Figure S2 Difference between the observed data and the
10,000 non-strata model segregated by high-risk and
low-risk HPV types: all subjects (A), general population (B),

colposcopy population (C).

(TIF)

Figure S3 Testing specificity of HPV DNA genotyping
test on PCR amplified plasmid DNA for (A) HPV 56 and (B) 66.

(TIF)

Table S1 Primer sequences used for HPV 56 and 66
PCR amplification.

(DOC)

Table S2 Key parameters and assumptions of the
different randomization models.

(DOC)

Table S3 Significant 3 HPV type combinations.

(DOC)

Table S4 Significant 4 HPV type combinations.

(DOC)

Table S5 Number of times HPV types appeared in
significant combinations.

(DOC)

Methods S1 Supplementary methods for statistical
calculations.

(DOC)

Data S1 Supplementary data.

(TXT)
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